Commutative and Associative Properties

Commutative Property of Addition

Words In a sum, you can add terms in any order.

Numbers
$$5 + (-6) = -6 + 5$$

Algebra
$$a + b = b + a$$

Commutative Property of Multiplication

Words In a product, you can multiply factors in any order.

Numbers
$$4(-7) = -7(4)$$

Algebra
$$ab = ba$$

Associative Property of Addition

Words Changing the grouping of terms will not change the sum.

Numbers

$$(9+8)+6=9+(8+6)$$

Algebra

$$(a + b) + c = a + (b + c)$$

Associative Property of Multiplication

Words Changing the grouping of factors will not change the product.

Numbers

$$(2 \cdot 3) \cdot 4 = 2 \cdot (3 \cdot 4)$$

Algebra

$$(ab)c = a(bc)$$

Inverse and Identity Properties

Inverse Property of Addition

Words The sum of a number and its **additive inverse**, or opposite, is 0.

Numbers
$$5 + (-5) = 0$$

Algebra
$$a + (-a) = 0$$

Inverse Property of Multiplication

Words The product of a nonzero number and its **multiplicative inverse**, or reciprocal, is 1.

Numbers
$$\frac{3}{4} \cdot \frac{4}{3} = 1$$

Algebra For nonzero integers a and b,

$$\frac{a}{b} \cdot \frac{b}{a} = 1.$$

Identity Property of Addition

Words The sum of a number and the additive identity, 0, is the number.

Numbers
$$-7 + 0 = -7$$

Algebra
$$a + 0 = a$$

Identity Property of Multiplication

Words The product of a number and the **multiplicative identity**, 1, is the number.

Numbers
$$9 \cdot 1 = 9$$

Algebra
$$a(1) = a$$

The Distributive Property

Algebra For all numbers a, b, and c, a(b+c)=ab+ac and a(b-c)=ab-ac.

Numbers
$$8(10 + 4) = 8(10) + 8(4)$$
 and $3(4 - 2) = 3(4) - 3(2)$